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POSITIVELY CURVED COMPLEX SUBMANIFOLDS
IMMERSED IN A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let P,.,(C) be a complex projective space of complex dimension n + p with
the Fubini-Study metric of constant holomorphic sectional curvature 1. By a
Kaehler submanifold we mean a complex submanifold with induced Kaehler
structure.

The purpose of this paper is to prove the following two theorems.

Theorem 1. Let M be an n-dimensional complete Kaehler submanifold im-
mersed in P, ,(C). If every holomorphic sectional curvature of M is greater
than 1/2, and the scalar curvature of M is constant, then M is totally geodesic
in P, ,(C).

Theorem 2. Let M be an n-dimensional complete Kaehler submanifold
immersed in P, ,(C). If every holomorphic sectional curvature of M is greater
than 1 — }(n + 2)/(n 4 2p), then M is totally geodesic in P, (C).

It is clear that in the case of p = 1, Theorem 2 is an improvement of
Theorem 1.

2. Preliminaries

Let J (resp. J) be the complex structure of M (resp. P, ,(C)), let g (resp. g)
be the Kaehler metric of M (resp. P,.,(C)), and denote by ¥ (resp. 7) the
covariant differentiation with respect to g (resp. §). Then the second funda-
mental form ¢ of the immersion is given by

oX,Y) =V,Y —V,Y,

and satisfies Jo(X,Y) = ¢(JX, Y) = o(X,JY), and the structure equation of
Gauss is
gRX,Y)Z, W) = §(X,W),a(Y, 2Z)) — §o(X,2),a(Y,W))
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+ g(UX, W)gY,2Z) — g(JX, Z)g(JY, W)
+ 28(X,JY)e(Z, W],

where R is the curvature tensor field of M. Let &, -+, &5, &, -+, &pe (B0 =
J£,)) be local fields of orthonormal vectors normal to M. We use the following
convention on the range of indices: i,j=1,-.-,p; {,p=1,..-,p, 1%, ...,
p*. If we set

g(AAX, Y) = g(ﬂ'(X, Y)9 EJ) s

then A, A =1,-.-,p, 1% ... p* arelocal fields of symmetric linear trans-
formations. We can easily see that 4, = JA4, and J4; = —A,J so that, in
particular, tr A, = 0. Moreover, the structure equation of Gauss can be written
in terms of A4,’s as '

gR(X,Y)Z, W) = 7 [8(A.X, W)g(A,Y,Z) — g(A,X, Z)g(A,;Y, W)]
+ {le(X, W)e(Y, Z) — (X, Z)g(Y, W)
+ g(UX, Wig(JY, 2) — gUX, 2)e(JY, W)
+ 28(X,IY)gUZ, W) .

(1)

Let S be the Ricci tensor of M, and p the scalar curvature of M. Then we have
(2) S(X,Y) = 4(n + Dg(X,Y) — 28(Y AX,Y),
(3) p=nn+1) —|alt,

where ||o|| is the length of the second fundamental form of the immersion so
that

lolf =2 2 tr A2,

We can see from (1) that the holomorphic sectional curvature H of M deter-
mined by a unit vector X is given by

(4) HX) =1~ 2|o(X,X)|f =1~ 2 3] g(4.X, X)" .
It is known that the second fundamental form ¢ satisfies a differential equation
which gives

Lemma 1 [2]. We have

$dliolf = IPoll + X tr(4,A4, — A,A4)
— 2 tr (4,4)1 + 3n + lol?,
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where 4 denotes the Laplacian, and V' the covariant differentiation with respect
to the connection (in tangent bundle) @ (normal bundle).

3. Proof of theorems

Since M is complete and every holomorphic sectional curvature of M is
bounded from below by a positive number, M is compact.

First we prove Theorem 1. Since 1/2 < H < 1 and p is constant, Theorem
2 in {1] implies that H is constant. This, combined with the corollary to
Theorem 3 in [4] and Theorem 1 in [3], implies that M is totally geodesic.

Next we prove Theorem 2. From (4) we can see that if every holomorphic
sectional curvature of M is greater than 1 — §, then the square of every
eigenvalue of A, must be smaller than §/2. Therefore we have

(5) tr (A242) < % trA2  forall 2and v .

Lemwma 2. IfH> 1 — g, then
(6) ntr(d,A, — AA) + 2pde|lf > 0.
Proof. We have

Tt (4,4, — A,A)
= —2 3 tr (4], — (4,4,))

-

= 2| T tr (4243 — (A,A)) + 2 % tr (4242 — (A,A.))

Li#Jj

+ I (A — (A, + Tt (Al — (Ao j.)Z)]

i#]

Lz (AL — (A,4)) + 2 St A + 3t (4247 + (AiA,)Z)]
ey ixs .

= 8[nuwaa trA;!] = —8 Y tr(A4Y) .

Li* ]

From (5) it follows that
T tr (447 < ’?2‘7 YtrA? = ”f It .

which implies (6) immediately.
Lemma3. IfH > 1 — 4, then
(7) 2 [tr (4,4)) < néllolf .

Proof. Let A = tr(A,4,). Then A is a local field of symmetric (2p, 2p)-
matrix. Since ), [tr (4,4 )]* = tr A%, J, [tr (4,4,)) is a geometric invariant,
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i.e., it does not depend on the choice of &, - .., §,. Therefore it suffices to
show that the inequality holds for a suitable choice of &, - - -, &, at each point
of M. Since 4 = tr(4,4,) is a real representation of the Hermitian matrix
Ay = (tr (4;4,) + ¥ —11tr(4;4,)), it can be diagonalized by a unitary trans-
formation at each point of M. In other words, at each point of M, 4 can be

assumed to be diagonal for a suitable choice of &, - - -, &,, that is,
[tr A2 T
tr A2
tUAU = -
, tr A2

tr A2 |

for (real representation of) some unitary matrix U. Therefore we obtain
(8) SItr(4A) =t =tr(UAU} =23 (tr A*<4n Y tr 4},

by using the general fact that a symmetric (2n, 2n)-matrix A4 satisfies (tr 4%)?
< 2ntr A*. (8), together with (5), hence implies (7). q.e.d.
From Lemmas 1, 2 and 3 it follows that

tilolf = [3(n + 2) — (n + 2p)a]|[dIF .

Since § = ¥(n + 2)/(n + 2p), we have d|ig| > 0. Thus by the well-known
Bochner’s lemma, /8| is constant, and so is p due to (3). Since 1 —
3(n + 2)/(n + 2p) > &, Theorem 1 implies that M is totally geodesic.
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